Open Access Open Badges Research

Cause-specific mortality time series analysis: a general method to detect and correct for abrupt data production changes

Grégoire Rey1*, Albertine Aouba1, Gérard Pavillon1, Rasmus Hoffmann2, Iris Plug2, Ragnar Westerling3, Eric Jougla1 and Johan Mackenbach2

Author Affiliations

1 INSERM, CépiDc, Le Kremlin-Bicêtre, France

2 Erasmus MC, Department of Public Health, Rotterdam, The Netherlands

3 Department of Public Health and Caring Sciences, Social Medicine, Uppsala University, Uppsala, Sweden

For all author emails, please log on.

Population Health Metrics 2011, 9:52  doi:10.1186/1478-7954-9-52

Published: 19 September 2011



Monitoring the time course of mortality by cause is a key public health issue. However, several mortality data production changes may affect cause-specific time trends, thus altering the interpretation. This paper proposes a statistical method that detects abrupt changes ("jumps") and estimates correction factors that may be used for further analysis.


The method was applied to a subset of the AMIEHS (Avoidable Mortality in the European Union, toward better Indicators for the Effectiveness of Health Systems) project mortality database and considered for six European countries and 13 selected causes of deaths. For each country and cause of death, an automated jump detection method called Polydect was applied to the log mortality rate time series. The plausibility of a data production change associated with each detected jump was evaluated through literature search or feedback obtained from the national data producers.

For each plausible jump position, the statistical significance of the between-age and between-gender jump amplitude heterogeneity was evaluated by means of a generalized additive regression model, and correction factors were deduced from the results.


Forty-nine jumps were detected by the Polydect method from 1970 to 2005. Most of the detected jumps were found to be plausible. The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.


The method presented in this paper was successfully applied to a large set of causes of death and countries. The method appears to be an alternative to bridge coding methods when the latter are not systematically implemented because they are time- and resource-consuming.